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ABSTRACT

Visual tracking is a fundamental problem in computer vi-
sion. However, due to the (sometimes) ambiguous target in-
formation given at the first frame, it has also been criticized
as less well-posed compared with other tasks with clearly-
defined targets, such as object detection and semantic seg-
mentation. In this paper, we try to evaluate the importance
of object category in visual tracking by tracking objects with
known object types. The proposed algorithm, termed Deep-
Track with Objectness (DTO), naturally combines the state-
of-the-art deep-learning-based detectors and trackers, which
essentially share a large part of the network. In DTO, a deep
tracker, which is scale-fixed and sensitive to small translations
tracks the object in a relative short lifespan. A deep detec-
tor, which is scale-changeable and robust to pose or illumina-
tion changes guides the deep tracker in a longer lifespan. As
the deep tracker and detector share the main part of their net-
works, no much extra computation is imposed while the per-
formance gain is significant. We test the proposed algorithm
on two well-accepted benchmarks and on both of them, the
proposed method increases the tracking accuracies remark-
ably compared with state-of-the-art visual trackers.

Index Terms— visual tracking, deep learning, object de-
tection

1. INTRODUCTION

Visual tracking is one of the long standing computer vision
tasks. During the last decade, as the surge of deep learning,
more and more tracking algorithms benefit from deep neu-
ral networks, e.g. Convolutional Neural Networks [1, 2] and
Recurrent Neural Networks [3, 4]. Despite the commonly-
admitted success, visual tracking is still criticized as less well-
posed compared with other tasks with clearly-defined targets,
such as object detection and semantic segmentation. In visual
tracking, the only reliable target information is given at the
first frame while the information could be ambiguous or mis-
leading in many circumstances. For example, in Figure 1, a
car is to be tracked in the sequence. From the viewing angle
at the first frame, only the car back can be observed so it is
defined as the “target” by the blue bounding box. Nonethe-

less, this simple target definition usually leads to an ambigu-
ity: when the target pose changes significantly, it is hard to
evaluate tracking results. In specific, as shown in Figure 1,
either the yellow box or the blue box can be considered as
a “perfect” tracking, depending on what exactly the tracking
target is, the car back or the whole car.

?

Fig. 1. The commonly existing ambiguity in visual tracking.
From left to right, the car back is labeled as the tracking target
at the first frame, as the viewing angle changes, the car back
and the visible part of the car become more and more differ-
ent. Finally, when the pose changes significantly, as shown
in the right column, it is hard to judge which bounding box
(among blue and yellow ones) is the better tracking result.

Unfortunately, a clearly-defined tracking target is usually
absent in visual tracking due to the very limited information
(a bounding box) given at the first frame. However, by ex-
amining the famous tracking datasets [5, 6] further, we can
find an underlying assumption of defining tracking target: the
tracking target is usually defined as a whole object, rather
than a side of it.

In this work, we try to partially address the ill-posed prob-
lem by imposing the objectness in visual tracking tasks. In
other words, the tracker tracks the object given the target’s
bounding box at the first frame as well as the category of the
target. There already exists some visual tracking methods em-
ploying the objectness for higher tracking performance. For
instance, [1] and [7] learn the object features in conventional
deep-learning style and then the network is updated in the
specific video sequence; [8] designs a heuristic object pro-



posal algorithm for eliminating the non-object tracking can-
didates. While these methods mainly focusing on the generic
objectness, we pay more attention to some specific object cat-
egories. The proposed method, termed DeepTrack with Ob-
jectness (DTO), is designed based on the HCF [9] tracking
algorithm and assumes that the tracker is aware of the ob-
ject category of the tracking target. This leads to a significant
boost in tracking performance over the ordinary HCF tracker
in two well-adopted tracking benchmarks, as we show in the
experiment part.

2. DEEPTRACK WITH OBJECTNESS

2.1. Tracking with two types of results

The proposed DTO algorithm is built on the HCF tracker [9].
Besides the target bounding-box, the object category is also
given at the first frame. This assumption is similar to the
original DeepTrack algorithm [10] while we exploit the ob-
ject information in a more natural way.

Input
3@300x300

Conv1
64@300x300

Conv2
112@150x150

Conv3
256@75x75

Conv4
512@38x38

Conv5
512@19x19

KCF Respond

Deep Feature

Conv3_3
256@75x75

Conv4_3
512@38x38

Conv5_3
512@19x19

Conv6
1024@19x19

… … …

D
etectio

n
s

N
o

n
-M

axim
u

m
 

Su
p

p
ressio

n

Fig. 2. The CNN structure of the proposed DTO tracker. It
is built on a VGG-16 network and the features extracted from
conv33, conv43 and conv53 are used for KCF tracking, the
features from other 6 layers are used by SSD [11] for regress-
ing objects with different scales.

Recall that in HCF, a VGG-19 CNN model [12] is used for
extracting deep features for visual tracking. And the VGG-19
network is learned for image classification on the ILSVRC
dataset [6]. In this work, instead of using the image classifi-
cation network, a CNN model for object detection is used for
extracting deep features. When tracking, the KCF trackers are
performed on the deep features and the tracking results are
inferred following the strategy of HCF. Meanwhile, the de-
tection results (only for the current object category) are also
obtained based on the deep detector. In specific, the origi-
nal VGG-19 network is replaced by the CNN model of Single
Shot MultiBox Detector (SSD), a state-of-the-art detection al-
gorithm [11].

The CNN structure of the proposed DTO method is shown
in Figure 2. One can see that this CNN model is essentially

VGG-16 expect that some auxiliary CNN branches are added
for regressing the object bounding box in different scales [11].
Note that VGG-16 is less complex than VGG-19, thus even
with the extra detection layers, the proposed DTO is only
slightly slower than its prototype, the HCF tracker.
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Fig. 3. The flowchart of the detection-guided tracking pro-
cess. Top: the tracking box (shown in red) is obtained fol-
lowing the same strategy as HCF. Meanwhile, some detection
bounding boxes are also generated by SSD [11]. Bottom: af-
ter removing the unqualified detection bounding boxes, the
average scale and aspect ratio of the detections are used to
correct the current tracking box. Better view in color.

2.2. A simple yet effective guidance from detector

Given the tracking bounding-box and detection bounding-
boxes, DTO merges the results in a simple yet effective way.
Figure 3 demonstrates the merging process. Specifically, let
us assume the tracking bounding-box (red bounding-box ob-
tained in the same way as the ordinary HCF tracker) is rep-
resented as a 4-D vector Bt = [xt, yt, wt, ht] ∈ R4×1 where
xt, yt, wt and ht are the x-axis coordinate of the box cen-
ter, the y-axis coordinate of the box center, the width and
the height of the tracking box, respectively. The SSD de-
tector [11] generates multiple detection bonding-boxes stored
in the set Bd = {B1

d,B
2
d, . . .B

N
d } with the SSD scores

{s1d, s2d, . . . , sNd }. As shown in Figure 3, we firstly remove
some unqualified detection boxes that are far away from the
tracking box or with low scores. Normally, the qualified de-
tection box set is selected as

B′d = {∀Bi
d | IoU(Bi

d,Bt) > 0.5 & sid > 0.6} (1)



We use at =
√
wt · ht and rt = wt/ht to represent the

scale and aspect ratio of the tracking box. Suppose the num-
ber of qualified detection boxes is Nq , we calculate the av-
erage scale and aspect ratio for the qualified detection boxes
as

ād = 1
Nq

∑
Bi

d∈B
′
d

aid (2)

r̄d = 1
Nq

∑
Bi

d∈B
′
d

rid (3)

Then the scale and aspect ratio of the final prediction, i.e.,
a∗t and r∗t are given by

a∗t =
(

1− 1
1+exp(−λ(s∗d−s0))

)
· at + (4)

1
1+exp(−λ(s∗d−s0))

· ād

r∗t =
(

1− 1
1+exp(−λ(s∗d−s0))

)
· rt + (5)

1
1+exp(−λ(s∗d−s0))

· r̄d

where s∗d = max([s1d, s
2
d, . . . , s

Nq

d ]), i.e., the max scores over
the qualified detection boxes. The hyper-parameters λ and s0
are set to 10 and 0.6 in practice.

Finally, the predicted bounding-box of DTO writes

B∗t =

[
xt, yt,

wt · a∗t
at

,
wt · a∗t
at · r∗t

]
. (6)

From 6 and Figure 3 one can see the original HCF track-
ing box is corrected by the detection boxes. We found the
correction is usually beneficial thanks to the more clear defi-
nition of the target category and the well-learned detector.

3. EXPERIMENT

In this section, we report the results of a series of experi-
ment involving the proposed tracker and some state-of-the-art
approaches. Our DTO tracker is compared with some well-
performing shallow visual trackers including the Struck [13],
MIL [14], TLD [15] CT [16] and CSK [17]. Also, some re-
cently proposed deep trackers including MD-net [18], HCF
[9], GOTURN [19] and the Siamese tracker [20] are also com-
pared. All the experiment is implemented in MATLAB with
matcaffe [21] deep learning interface, on a computer equipped
with a Intel i7 4770K CPU, a NVIDIA GTX1070 graphic card
and 32G RAM.

Recall that one condition of using DTO is that it can only
track the object that the detector recognizes while the ordinary
SSD is learned for predicting 20-class objects in VOC dataset
[22]. In visual tracking datasets, on the other hand, the most
common categories include cars, pedestrians and human faces
[5, 6]. However, there is no face category in VOC and the
“person” category in VOC is defined very differently from

the concept “pedestrian” in visual tracking1. We thus only test
the involved trackers on the car-subset of the original tracking
benchmarks. We claim this is sufficient for illustrating the
importance of target category in visual tracking. A DTO-like
face tracker can also be built based on a well-learned face
detector while this is out of the scope of this paper.

3.1. Results on OTB-100-Car

Similar to its prototype [23], the Object Tracking Benchmark
100 (OTB-100) [5] consists 100 video sequences and involves
51 tracking tasks. It is one of the most popular tracking
benchmarks since the year 2013, The evaluation is based on
two metrics: center location error and bounding box over-
lap ratio. To evaluate the proposed method, we select all the
video sequences targeting on cars from OTB-100, the totally
12 video sequences contain almost all of the tracking chal-
lenges such as scale variation, illumination variation, occlu-
sion and motion blur. The one-pass evaluation (OPE) is em-
ployed to compare our algorithm with the HCF [9], GOTURN
[19], the Siamese tracker [20] and the afore mentioned shal-
low trackers. The result curves are shown in Figure 4

According to Figure 4 we can see that the proposed DTO
ranks the first on location accuracy while ranks the second
with the overlapping metric. It achieves significantly better
results than its prototype, i.e., the HCF tracker. The perfor-
mance DTO is also very close to the best-performing MD-
Net. Siamese tracker is also comparable to DTO and MD-Net
while GOTURN performs worse than the other deep trackers.
On the other hand, the shallow methods perform consistently
worse than the DTO, MD-Net and the Siamese tracker.

3.2. Results on ILSVRC2016-VID-Car

The ILSVRC(Large Scale Visual Recognition Challenge) [6]
is one of the largest visual recognition datasets. The object
detection from video is a new detection task in recent years,
and there are 30 basic-level categories for this task, which is
a subset of the 200 basic-level categories of the object detec-
tion task. We selected 58 videos that contains car from this
dataset and compare the location accuracy and overlap score
over the selected deep trackers 2. As Siamese tracker and the
GOTURN algorithm learned their models in this dataset, we
remove them from comparison. The success plots and the
precision plots are shown in Figure 5

From the figure we can see that DTO still achieves com-
parable accuracies as the best-performing MD-Net algorithm.
The remarkable gap between the DTO plots and the HCF
plots proofs the validity of the introduction of the object cat-
egories.

1The former one includes any part of a person while the latter one usually
stands for the whole human body

2We do not involve shallow trackers in this experiment as they usually
perform worse than the deep ones and the results of the shallow trackers are
not directly available
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Fig. 4. The location error plots and the overlapping accuracy
plots tested on the “car subset” of OTB-100. The compar-
ing methods including MD-Net [18], HCF [9], the Siamese
Tracker [20], GOTURN [19], DTO (this paper) and the shal-
low trackers.

4. CONCLUSION

In this paper, we propose a very simple yet effective way to
guide the visual tracking by the detection results. The pro-
posed DTO tracker can be considered as a fusion of the state-
of-the-art deep tracker and deep detector. As they share most
part of the network structure, no much extra computation is
required. On the other hand, we can see a dramatic perfor-
mance improvement in DTO, compared with its prototype,
the HCF tracker. This improvement implies the absence of the
target object could lead to poor tracking performance while to
address this absence in a more sophisticated way could yield
much better deep trackers in the future.
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Fig. 5. The location error plots and the overlapping accu-
racy plots tested on the “car subset” of the ILSVRC2016-VID
dataset. The comparing methods including HCF [9], DTO
(this paper), MD-Net [18] and the shallow ones. We do not
involve the Siamese Tracker [20] and GOTURN [19] as they
are trained on this dataset.
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